The Neutrino Landscape

We have come a long way since the Solar Neutrino Problem still much to do

Bright Future: see "Neutrinos" White Paper

Conveners: A. de Gouvea, K. Pitts, K. Scholberg, G.P. Zeller

William J. Marciano
WINP

Workshop on the Intermediate Neutrino Program
Feb 4, 2015

Neutrino Masses & Mixing: The Heroic Years

R. Davis (BNL Chemist) – The Solar Neutrino Problem
 ~1/3 expected solar v_e flux
 >30 yr. Homestake Effort

Kamiokande & IMB Collaborations – **Supernova 1987A** & Hints of Atm. ν_μ osc. (depletion)

M. Koshiba (Super Kamiokande) finds v_{μ} - v_{τ} atm osc. Large!

SuperK, SNO, Kamland, Gallium Exps,..K2K, MINOS, T2K Daya Bay, RENO, Double Chooz... Neutrino Osc. Matures

Large 3 Generation Mixing Paradigm Cofirmed! $|\Delta m_{32}|$ & Δm_{21}^2 determined!

3 Generation Mixing Formalism

$$\begin{pmatrix} |\nu_e \rangle \\ |\nu_{\mu} \rangle \\ |\nu_{\tau} \rangle \end{pmatrix} = U \begin{pmatrix} |\nu_1 \rangle \\ |\nu_2 \rangle \\ |\nu_3 \rangle)$$

$$s_{12}c_{13} \qquad s_{13}e^{-i\delta})$$

$$(1)$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$c_{ij} = \cos\theta_{ij} , \quad s_{ij} = \sin\theta_{ij}$$

$$J_{CP} \equiv \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}\cos\theta_{13}\sin\delta. \qquad (2)$$

Current Neutrino Mass & Mixing Parameters

- $\Delta m_{32}^2 = m_3^2 m_2^2 = \pm 2.4(1) \times 10^{-3} \text{ eV}^2$ (atmospheric, beam & reactor all precise & consistent!)
- $\Delta m_{21}^2 = m_2^2 m_1^2 = +7.5(2) \times 10^{-5} \text{ eV}^2$ (Solar, Kamland)

$|\Delta m_{21}^2/\Delta m_{32}^2 \approx 1/30| \rightarrow CP Violation Exp Doable!$

Hierarchy m₃>m₁&m₂(normal) or m₃<m₁&m₂(inverted)?

Large Mixing!

```
\theta_{23} \sim 38 \pm 1^{\circ} \sin 2\theta_{23} \approx 0.97(1) (\theta_{23} or 90^{\circ}- \theta_{23}) (atm.) \theta_{12} \sim 34 \pm 1^{\circ} \sin 2\theta_{12} = 0.93(2) (solar) \theta_{13} \leq 9.0 \pm 0.5^{\circ} \sin 2\theta_{13} = 0.31(1) (reactor) 0 \leq \delta \leq 360^{\circ}? (some recent sensitivity)
```

J_{CP}~0.03sinδ (potentially large!) CKM~2x10⁻⁵

3 Generation v_{μ} - v_{e} Oscillations

$$P(\nu_{\mu} \rightarrow \nu_{e}) = P_{I}(\nu_{\mu} \rightarrow \nu_{e}) + P_{II}(\nu_{\mu} \rightarrow \nu_{e}) + P_{III}(\nu_{\mu} \rightarrow \nu_{e})$$

+ matter + smaller terms

$$\mathbf{P}_{I}(\nu_{\mu} \to \nu_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right)$$

$$\begin{split} \mathbf{P}_{II}(\nu_{\mu} \to \nu_{e}) &= \frac{1}{2} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13} \\ \sin \left(\frac{\Delta m_{21}^{2} L}{2E_{\nu}}\right) \times \left[\sin \delta \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \right. \\ &+ \cos \delta \sin \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \cos \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right) \right] \end{split}$$

$$\mathbf{P}_{III}(\nu_{\mu} \to \nu_{e}) = \sin^{2} 2\theta_{12} \cos^{2} \theta_{13} \cos^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{\nu}} \right)$$

For antineutrinos, $\delta \to -\delta$ and opposite matter effect.

CP Violation Asymmetry

$$A_{CP} \equiv \frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}$$
(3)

To leading order in Δm_{21}^2 (sin² $2\theta_{13}$ is not too small):

$$A_{CP} \simeq \frac{\cos \theta_{23} \sin 2\theta_{12} \sin \delta}{\sin \theta_{23} \sin \theta_{13}} \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}} \right) + \text{matter effects}$$
(4)

$$F.O.M. = \left(\frac{\delta A_{CP}}{A_{CP}}\right)^{-2} = \frac{A_{CP}^2 N}{1 - A_{CP}^2}$$
 (5)

N is the total number of $\nu_{\mu} \rightarrow \nu_{e} + \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ events. Since N falls (roughly) as $\sin^{2}\theta_{13}$ and $A_{CP}^{2} \sim 1/\sin^{2}\theta_{13}$, to a first approximation the F.O.M. is independent of $\sin\theta_{13}$. Similarly, given E_{ν} the neutrino flux and consequently N falls as $1/L^{2}$ but that is canceled by L^{2} in A_{CP}^{2} .

CP Violation Insensitivities

• To a very good approx., our statistical ability to determine δ or A_{cp} is independent of $\sin^2 2\theta_{13}$ (down to ~ 0.003) and the detector distance L (for long distance).

It turned out $\sin^2 2\theta_{13} \approx 0.1!$ about 2-3 times larger than assumed in early studies precision θ_{13} & δ determination easier! Smaller A_{CP} Might help some systematics

What do we still need to learn?

- 1. **Sgn** Δm_{32}^{2} ? (Important for Neutrinoless $\beta\beta$ Decay) Earth Matter Effect (SM or "New Physics") or Reactor Precision (Possible Near Term)
- 2. Value of δ?, J_{CP}?, <u>CP Violation?</u> (Holy Grail)
 Relationship to Leptogenesis
- 3. **Precision** Δm_{32}^2 , Δm_{21}^2 , θ_{23} , θ_{12} , θ_{13} (better than 1%!) Redundancy & neutrinos vs antineutrinos Unitarity Violation? Sterile neutrino Mixing
- 4. "New Physics" Sterile v, <u>Very Weak</u> Long/Short Distance New Physics (*The Dark World?*)...

CP Violation Requirements & LBNF

• What does it take to measure δ to ±15° in about 6 yrs.?

Answer (Approx.): 200kton Water Cerenkov Detector

Approx 20% Acceptance qr

40 kton LArgon 90% Acceptance

or Hybrid combination

+ Traditional Horn Focused v_{μ} WBB (0.5-5GeV) powered by

1-2MW proton accelerator

Long Distance > 1000km

Other approaches eg. Neutrino factory, low energy beams...

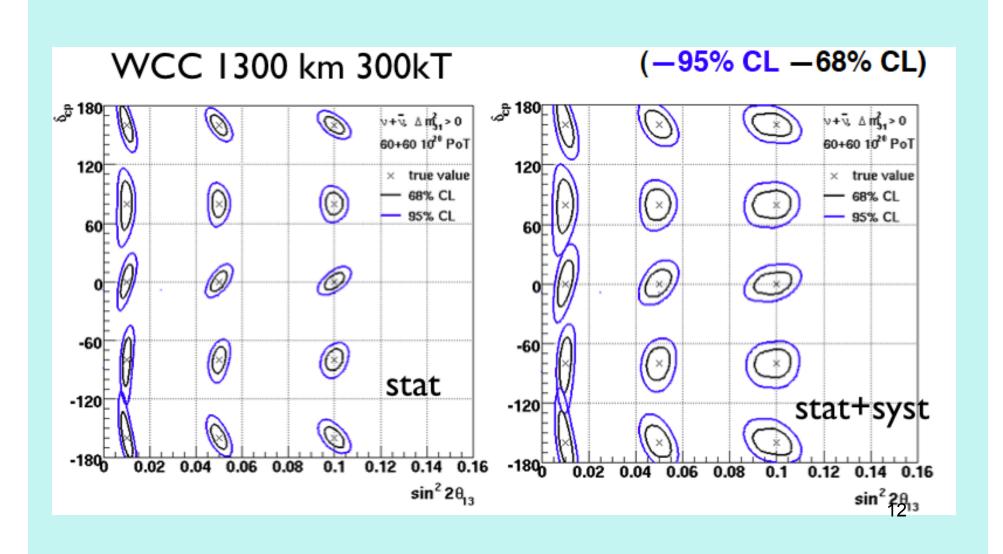
Exp. Goals: LBNF & Near Term Efforts

Measure Leptonic CP Violation & phase δ
 Our Origin (Leptogenesis Matter-antiMatter Asy.)

Determine (Precisely) Neutrino Mass & Mixing Parameters Redundant Comparison Tests (Unitarity) Understand Pattern (Underlying Symmetry eg A4)

Search for "New Physics" eg very weakly coupled new long or short distance effects (in Matter) vs MSW

Search for Sterile Neutrinos (small mixing)


Other Physics

- Atm. vs Beam Neutrino Oscillations
- Supernova Neutrinos (Relic & New),
- Proton Decay (B-L=0)... Neutron-antiNeutron Osc. ΔB=2

Broad Revolutionary Discovery Potential

Big Underground Detectors Originally Proposed for Proton Decay Searches Motivated by Grand Unification Facility for Revolutionary Discoveries

CP Phase & θ_{13} LBNF Sensitivity

 Δm_{32}^2 and $\sin^2 2\theta_{32}$ can be measured in long baselines as functions of E_v (also obtained from atmospheric v).

$$v_{\mu} \rightarrow v_{\mu} \& antiv_{\mu} \rightarrow antiv_{\mu} Comparison$$

Usually phrased as a test of CPT (true in vacuum)

Goals

Long Term: CP violation in neutrino oscillations

LBNE: 1300km, WBB, 1-2MW, 40kton LAr, 10yrs

Proton Decay (10³⁵yr)

Similar Detector Requirements (Fortuitous)

Also: Atm & supernova v, neutron-antineutron osc.,...

Nearer Term & LBNF

Sgn Δm_{32}^2 ? (Important for Neutrinoless $\beta\beta$ Decay)

Precision Δm_{32}^2 , Δm_{21}^2 , θ_{23} , θ_{12} , θ_{13} (goal? ±1%!)

"New Physics" - Sterile v, Very Weak New

Interactions...Neutrino-antineutrino differences?

Lessons Learned for Future Neutrino Experiments

- Understand all backgrounds before starting (Recent experiments very good)
- Over design detector and its capabilities if possible (little room for descoping)

Definitive goals: eg. Sterile neutrino sensitivity

Start as soon as possible (long time commitment)